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We analyzed the influence of temperature on the main characteristics of a passive spin-torque microwave detector (STMD): volt-watt
sensitivity, signal-to-noise ratio, and minimum detectable microwave power. We reveal that these parameters do not always improve
with the decrease of temperature. The developed formalism can be used for the optimization of the practical parameters of a STMD in
a wide range of temperatures.
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I. INTRODUCTION

T HE spin-transfer-torque (STT) effect in magnetic multi-
layers was theoretically predicted in [1], [2] and experi-

mentally observed in [3]–[13]. It provides a new method of ma-
nipulation of the magnetization direction in nano-magnetic sys-
tems [14] and can be used for magnetization switching [3], [4]
and generation of microwave oscillations under the action of
a DC electric current [5]–[10], [14]. Another manifestation of
STT, so-called spin torque diode effect [11]–[13], can be used
for the development of practical microwave detectors (spin-
torque microwave detectors (STMD)) and for quantitative ex-
perimental determination of the STT parameters [15], [16].
The spin torque diode effect is a quadratic rectification ef-

fect of the input microwave current in a magnetoresis-
tive junction, which is commonly observed in the traditional
regime of operation of a STMD, when the frequency of the
current is close to the ferromagnetic
resonance frequency of the magnetic tunnel junction (MTJ).
In this case the induced resonance oscillations of the junction
resistance can mix with the oscillations of the input mi-
crowave current and produce a sufficiently large output
DC voltage across the junction (here
denotes averaging over the period of oscillations ).
It has been shown in [11]–[13] that in this regime of opera-

tion, a STMD performs as a resonance-type quadratic detector
of microwave radiation generating a DC voltage pro-
portional to the acting microwave power :

. The detector sensitivity has a maximum
value [17] when the frequency of the external mi-
crowave signal is close to the eigen-frequency of the MTJ
nanopillar, .
Recent experimental results [12], [13], [18], [19] have

demonstrated that the volt-watt sensitivity of a
STMD based on the spin-torque diode effect can exceed that of
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passive semiconductor Schottky-diode microwave detectors.
This makes STMDs very interesting for practical applications
in microwave electronics.
The operation and the performance of all types of microwave

detectors are limited by noise (in particular, by the low-fre-
quency Johnson-Nyquist noise in the case of unbiased Schottky
diodes [20]), and, therefore, depend on the temperature. In the
case of magnetic STMDs the temperature dependence of de-
tector’s characteristics may be non-trivial, since many STMD
parameters besides the noise level (e.g., saturation magntetiza-
tion and spin-polarization efficiency) also change with the tem-
perature.
In this work we analyze the influence of temperature on the

performance of a passive STMD, namely, we studied the tem-
perature dependences of STMD sensitivity [17], signal-to-
noise ratio , and minimum detectable microwave power

(for a detector connected to a standard 50 trans-
mission line) [21]. We believe that the developed formalism can
be used for the optimization of the practical parameters of an
STMD in a wide range of temperatures.

II. THEORETICAL MODEL

In this section we present a theoretical analysis of the perfor-
mance of a passive STMD (no DC bias current) using the STMD
model developed in [16], [21].
We consider a “planar” STMD based on a isotropic circular

nanopillar of the radius , in which both the free magnetic
layer (FL) and the pinned magnetic layer (PL) are mag-
netized in-plane. In this case, the MTJ eigen-frequency is

and the damping rate has the
form , where
is the modulus of the gyromagnetic ratio, is the saturation
magnetization of the FL of MTJ, is the Gilbert damping
constant, is the vacuum permeability and is the in-plane
bias DC magnetic field.
For simplicity we use the macrospin approximation for the

FL of a STMD and also assume that the FL is isotropic over
the entire temperature range. If this is not the case a more rig-
orous analysis should be performed [14]. Despite the obvious
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limitations of this model, we believe that it is qualitatively cor-
rect for isotropic magnetic materials (e.g., permalloy), at least
for temperature range from 10 K to 300 K. If the materials with
significant crystalline and strain-induced magnetic anisotropies
(e.g., Co) are used for the MTJ free layer (see e.g., [12]) a more
sophisticated model for the magnetic state of the MTJ free layer
at low temperatures might be needed.
We used the analytical theory of noise properties of a STMD

developed in [21] and the expression for the resonance de-
tector’s sensitivity from [17]. We took into account two
sources of thermal noise: low-frequency Johnson-Nyquist
noise, which is characterized by a noise power , and the
magnetic noise with noise power (see [21] for details).
We assumed that the spin-polarization of the bias current

in the STMD depends on the temperature as

(1)

where is the temperature coefficient of spin-polarization,
while the STMD resistance in a perpendicular magnetic state

is determined by

(2)

where is the temperature coefficient of resistance [22], [23]
and RA is the temperature-dependent resistance-area product of
the MTJ. Conventional parallel and antiparallel
resistances of an MTJ are connected to and by

, whereas conventional
TMR ratio can be found as

. We also used the following expression for the
temperature dependence of the static magnetization :

(3)

where is the Curie temperature and is dimensionless pa-
rameter, typically selected within the range from 0.1 and up to
0.5 [24].
In the scope of our model the parameters ,

and of the STMD at the resonance frequency
can be written as [17], [21]

(4)

(5)

(6)

Here is the reduced Planck constant, is the modulus of the
electron charge, is the volume of the FL ( is its

radius and is its thickness), is the angle between the static
magnetization in the FL and PL of the STMD

(7)

is the STMD resistance, is the impedance of the
detector’s input transmission line. The expressions for noise
powers and have the form [21]

(8)

(9)

where is the Boltzmann constant and is the frequency
bandwidth of measurement (we assume ).

III. RESULTS AND DISCUSSION

In our calculations we used the following typical parameters
of the Permalloy (Ni Fe ) FL in the MTJ nanopillar having
composition Co/Al O /Ni Fe taken at room temperature

(see e.g., [17], [21]–[23]): radius of the nanopillar
nm, thickness of the FL nm, spin-polariza-

tion efficiency , temperature coefficient of
spin polarization [23], angle between
equilibrium magnetization of the FL and PL , tem-
perature coefficient of resistance
[23], equilibrium resistance of an STMD
(corresponding to ), Gilbert
damping constant , saturation magnetization of the
FL , the Curie temperature
[25], power coefficient , in-plane bias DC magnetic
field (giving GHz, MHz
at K). For these parameters (4) gives the resonance
STMD sensitivity in the passive regime
V/W, which is comparable to the sensitivity of Schottky diodes
[12], [20].
We also assume that the power of external microwave signal

W and the measurement bandwidth MHz.
According to (8), (9) it gives the following estimations for the
noise powers: nW and nW at
K.
The dependences of and on temperature are

shown in Fig. 1 and temperature dependence of
is shown in Fig. 2.
One can see from Fig. 1 that, for relatively high temperatures

( K), the sensitivity monotonically decreases with
the increase of temperature , mainly due to the temperature de-
pendence of the spin polarization efficiency —see (1), (4).
At low temperatures , the sensitivity slightly
increases with . This behavior is explained by the reduction of
static magnetization , which, in this temperature interval,
has stronger temperature dependence than . Themaximum
of the curve corresponds to the temperature at which the
factor reaches its maximum value. Note,
that in the case of the reduction of with a de-
crease of the temperature in the range may become
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Fig. 1. Dependences of resonance volt-watt sensitivity (solid line) and
signal-to-noise ratio (dashed line) on temperature for the STMD
with typical parameters (see Section III for details).

Fig. 2. Temperature dependences of minimal detectable microwave power
for the STMD with temperature coefficient of resistance

(curve 1, solid line) and (curve 2, dashed line). All other
parameters are the same as for Fig. 1 (see also Section III for details).

more pronounced. It means, that cooling the STMD to very low
temperatures (of the order of 4 K) may have an adverse effect
in the form of reduction of its sensitivity.
In contrast to the temperature dependence of , the

signal-to-noise ratio monotonically decreases with
the increase of temperature (see dashed line in Fig. 1). This
dependence is defined, mainly, by the rapid increase of
the Jonhson-Nyquist noise power with the temperature.
The temperature dependence of the minimal detectable

microwave power , shown in Fig. 2, is more
complicated than the temperature dependencies and

. For some values of detector’s parameters the curve
may have a clear maximum at certain tempera-

ture . For instance, this situation is realized for an STMD
with high enough temperature coefficient of resistance (see
curve 2 in Fig. 2).
The temperature dependence of is deter-

mined by two main factors: by the temperature dependence

of the “intrinsic” minimal detectable power (without
taking into account the impedance mismatch effect), which
is determined from the equation , and the tem-
perature dependence of the impedance mismatch coefficient

for the detector and the
transmission line. Since monotonically decreases
with the increase of the temperature, the “intrinsic” power

monotonically increases with . For small temper-
ature coefficient of resistance , the temperature dependence
of is determined mainly by the “intrinsic”
minimum power and has a monotonic shape (see curve 1
in Fig. 2).
If the temperature coefficient of resistance is large, the

temperature dependence of the mismatch may become
stronger than the dependence . For typical STMD
parameters, decreases with the increase of temperature
(STMD resistance decreases and the mismatch with the trans-
mission line reduces). As a result, the minimum detectable
power decreases at high temperatures and
reaches maximum value at a certain finite temperature
(see curve 2 in Fig. 2). In this regime, cooling of a STMD
improves its characteristics only in the low-temperature region

.

IV. CONCLUSION

In conclusion, we have demonstrated that the volt-watt
sensitivity and minimum detectable microwave power

of a resonance-type STMD do not always
increase with an increase of the temperature, while the tem-
perature dependence of the signal-to-noise ratio of a STMD

is always monotonic. The non-monotonic behavior
of the sensitivity is determined by the interplay of tem-
perature dependencies of the static magnetization
and spin polarization . The temperature dependence of
the minimum detectable power is defined by
two competing factors—noise power and impedance
mismatch ,—and can have a maximum at temperatures

. The developed formalism can be used for the
optimization of practical parameters of a STMD in a wide
range of temperatures.
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I. INTRODUCTION

T HE spin-transfer-torque (STT) effect in magnetic multi-
layers was theoretically predicted in [1], [2] and experi-

mentally observed in [3]–[13]. It provides a new method of ma-
nipulation of the magnetization direction in nano-magnetic sys-
tems [14] and can be used for magnetization switching [3], [4]
and generation of microwave oscillations under the action of
a DC electric current [5]–[10], [14]. Another manifestation of
STT, so-called spin torque diode effect [11]–[13], can be used
for the development of practical microwave detectors (spin-
torque microwave detectors (STMD)) and for quantitative ex-
perimental determination of the STT parameters [15], [16].

The spin torque diode effect is a quadratic rectification ef-
fect of the input microwave current in a magnetoresis-
tive junction, which is commonly observed in the traditional
regime of operation of a STMD, when the frequency of the
current is close to the ferromagnetic
resonance frequency of the magnetic tunnel junction (MTJ).
In this case the induced resonance oscillations of the junction
resistance can mix with the oscillations of the input mi-
crowave current and produce a sufficiently large output
DC voltage across the junction (here
denotes averaging over the period of oscillations ).

It has been shown in [11]–[13] that in this regime of opera-
tion, a STMD performs as a resonance-type quadratic detector
of microwave radiation generating a DC voltage pro-
portional to the acting microwave power :

. The detector sensitivity has a maximum
value [17] when the frequency of the external mi-
crowave signal is close to the eigen-frequency of the MTJ
nanopillar, .

Recent experimental results [12], [13], [18], [19] have
demonstrated that the volt-watt sensitivity of a
STMD based on the spin-torque diode effect can exceed that of
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passive semiconductor Schottky-diode microwave detectors.
This makes STMDs very interesting for practical applications
in microwave electronics.

The operation and the performance of all types of microwave
detectors are limited by noise (in particular, by the low-fre-
quency Johnson-Nyquist noise in the case of unbiased Schottky
diodes [20]), and, therefore, depend on the temperature. In the
case of magnetic STMDs the temperature dependence of de-
tector’s characteristics may be non-trivial, since many STMD
parameters besides the noise level (e.g., saturation magntetiza-
tion and spin-polarization efficiency) also change with the tem-
perature.

In this work we analyze the influence of temperature on the
performance of a passive STMD, namely, we studied the tem-
perature dependences of STMD sensitivity [17], signal-to-
noise ratio , and minimum detectable microwave power

(for a detector connected to a standard 50 trans-
mission line) [21]. We believe that the developed formalism can
be used for the optimization of the practical parameters of an
STMD in a wide range of temperatures.

II. THEORETICAL MODEL

In this section we present a theoretical analysis of the perfor-
mance of a passive STMD (no DC bias current) using the STMD
model developed in [16], [21].

We consider a “planar” STMD based on a isotropic circular
nanopillar of the radius , in which both the free magnetic
layer (FL) and the pinned magnetic layer (PL) are mag-
netized in-plane. In this case, the MTJ eigen-frequency is

and the damping rate has the
form , where
is the modulus of the gyromagnetic ratio, is the saturation
magnetization of the FL of MTJ, is the Gilbert damping
constant, is the vacuum permeability and is the in-plane
bias DC magnetic field.

For simplicity we use the macrospin approximation for the
FL of a STMD and also assume that the FL is isotropic over
the entire temperature range. If this is not the case a more rig-
orous analysis should be performed [14]. Despite the obvious

0018-9464/$31.00 © 2012 IEEE
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limitations of this model, we believe that it is qualitatively cor-
rect for isotropic magnetic materials (e.g., permalloy), at least
for temperature range from 10 K to 300 K. If the materials with
significant crystalline and strain-induced magnetic anisotropies
(e.g., Co) are used for the MTJ free layer (see e.g., [12]) a more
sophisticated model for the magnetic state of the MTJ free layer
at low temperatures might be needed.

We used the analytical theory of noise properties of a STMD
developed in [21] and the expression for the resonance de-
tector’s sensitivity from [17]. We took into account two
sources of thermal noise: low-frequency Johnson-Nyquist
noise, which is characterized by a noise power , and the
magnetic noise with noise power (see [21] for details).

We assumed that the spin-polarization of the bias current
in the STMD depends on the temperature as

(1)

where is the temperature coefficient of spin-polarization,
while the STMD resistance in a perpendicular magnetic state

is determined by

(2)

where is the temperature coefficient of resistance [22], [23]
and RA is the temperature-dependent resistance-area product of
the MTJ. Conventional parallel and antiparallel
resistances of an MTJ are connected to and by

, whereas conventional
TMR ratio can be found as

. We also used the following expression for the
temperature dependence of the static magnetization :

(3)

where is the Curie temperature and is dimensionless pa-
rameter, typically selected within the range from 0.1 and up to
0.5 [24].

In the scope of our model the parameters ,
and of the STMD at the resonance frequency

can be written as [17], [21]

(4)

(5)

(6)

Here is the reduced Planck constant, is the modulus of the
electron charge, is the volume of the FL ( is its

radius and is its thickness), is the angle between the static
magnetization in the FL and PL of the STMD

(7)

is the STMD resistance, is the impedance of the
detector’s input transmission line. The expressions for noise
powers and have the form [21]

(8)

(9)

where is the Boltzmann constant and is the frequency
bandwidth of measurement (we assume ).

III. RESULTS AND DISCUSSION

In our calculations we used the following typical parameters
of the Permalloy (Ni Fe ) FL in the MTJ nanopillar having
composition Co/Al O /Ni Fe taken at room temperature

(see e.g., [17], [21]–[23]): radius of the nanopillar
nm, thickness of the FL nm, spin-polariza-

tion efficiency , temperature coefficient of
spin polarization [23], angle between
equilibrium magnetization of the FL and PL , tem-
perature coefficient of resistance
[23], equilibrium resistance of an STMD
(corresponding to ), Gilbert
damping constant , saturation magnetization of the
FL , the Curie temperature
[25], power coefficient , in-plane bias DC magnetic
field (giving GHz, MHz
at K). For these parameters (4) gives the resonance
STMD sensitivity in the passive regime
V/W, which is comparable to the sensitivity of Schottky diodes
[12], [20].

We also assume that the power of external microwave signal
W and the measurement bandwidth MHz.

According to (8), (9) it gives the following estimations for the
noise powers: nW and nW at
K.

The dependences of and on temperature are
shown in Fig. 1 and temperature dependence of
is shown in Fig. 2.

One can see from Fig. 1 that, for relatively high temperatures
( K), the sensitivity monotonically decreases with
the increase of temperature , mainly due to the temperature de-
pendence of the spin polarization efficiency —see (1), (4).
At low temperatures , the sensitivity slightly
increases with . This behavior is explained by the reduction of
static magnetization , which, in this temperature interval,
has stronger temperature dependence than . The maximum
of the curve corresponds to the temperature at which the
factor reaches its maximum value. Note,
that in the case of the reduction of with a de-
crease of the temperature in the range may become
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Fig. 1. Dependences of resonance volt-watt sensitivity (solid line) and
signal-to-noise ratio (dashed line) on temperature for the STMD
with typical parameters (see Section III for details).

Fig. 2. Temperature dependences of minimal detectable microwave power
for the STMD with temperature coefficient of resistance

(curve 1, solid line) and (curve 2, dashed line). All other
parameters are the same as for Fig. 1 (see also Section III for details).

more pronounced. It means, that cooling the STMD to very low
temperatures (of the order of 4 K) may have an adverse effect
in the form of reduction of its sensitivity.

In contrast to the temperature dependence of , the
signal-to-noise ratio monotonically decreases with
the increase of temperature (see dashed line in Fig. 1). This
dependence is defined, mainly, by the rapid increase of
the Jonhson-Nyquist noise power with the temperature.

The temperature dependence of the minimal detectable
microwave power , shown in Fig. 2, is more
complicated than the temperature dependencies and

. For some values of detector’s parameters the curve
may have a clear maximum at certain tempera-

ture . For instance, this situation is realized for an STMD
with high enough temperature coefficient of resistance (see
curve 2 in Fig. 2).

The temperature dependence of is deter-
mined by two main factors: by the temperature dependence

of the “intrinsic” minimal detectable power (without
taking into account the impedance mismatch effect), which
is determined from the equation , and the tem-
perature dependence of the impedance mismatch coefficient

for the detector and the
transmission line. Since monotonically decreases
with the increase of the temperature, the “intrinsic” power

monotonically increases with . For small temper-
ature coefficient of resistance , the temperature dependence
of is determined mainly by the “intrinsic”
minimum power and has a monotonic shape (see curve 1
in Fig. 2).

If the temperature coefficient of resistance is large, the
temperature dependence of the mismatch may become
stronger than the dependence . For typical STMD
parameters, decreases with the increase of temperature
(STMD resistance decreases and the mismatch with the trans-
mission line reduces). As a result, the minimum detectable
power decreases at high temperatures and
reaches maximum value at a certain finite temperature
(see curve 2 in Fig. 2). In this regime, cooling of a STMD
improves its characteristics only in the low-temperature region

.

IV. CONCLUSION

In conclusion, we have demonstrated that the volt-watt
sensitivity and minimum detectable microwave power

of a resonance-type STMD do not always
increase with an increase of the temperature, while the tem-
perature dependence of the signal-to-noise ratio of a STMD

is always monotonic. The non-monotonic behavior
of the sensitivity is determined by the interplay of tem-
perature dependencies of the static magnetization
and spin polarization . The temperature dependence of
the minimum detectable power is defined by
two competing factors—noise power and impedance
mismatch ,—and can have a maximum at temperatures

. The developed formalism can be used for the
optimization of practical parameters of a STMD in a wide
range of temperatures.
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